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REVIEW ARTICLE 

Fragments of matter from a maximum-entropy 
viewpoint 

R Englman 
Soreq Nuclear Research Centre, Yavne 70600. Israel 

Received 30 July 1990 

Abstract. After introducing the formalism of maximum entropy and reviewing alternative 
approaches for fragment size statistics, this paper derives a general distribution law (similar 
informto the Bose-Einsteinstatistia)andapplies it todistributionsobserved in rockmining. 
exploding metallic shells, shattered crystal pieces, droplets in spray. atomic or molecular 
clusters, space debris and fragmented nuclei. Variatiuns of fragment number with size 
that are power-law-like (fractal). humped or exponential can lead to physically significant 
conclusions regarding the fracturing mechanism. Theoretical aspects of the maximum- 
entropy methodin the derivationofthe distributionlaw(inciudingsomeinherentdifficu1ties) 
are discussed. 

1. Introduction 

The pieces of a broken object are among the most common examples of randomness 
anddisorder (Zurek 1989,section V). Theremay be psychological reasonsfor associating 
disorder with broken pieces, perhaps due to our dismay at seeing a nicely designed 
object shattered and to the need to clean up the resulting hess, but it is a fact that it has 
been found difficult to read some regularity into fragments. The regularity that we can 
hope to get is a law describing the disbibufion of fragments, especially with respect 
to their sizes but also regarding shapes and internal parameters. The prediction of 
distribution has in many cases practical advantages, relevant to scientific and tech- 
nological issues. A few instances taken from physics will be given later (section 6);  at 
this point Ishall describe the industrial importanceof oil-shale fragment size distribution 
since it was through this that I became involved in fragmentation. 

In a standard mode of operation (called ‘bench blasting’) the bituminous rock (oil 
shale) is explosively mined to produce the debris containing fragments. The large 
specimens are then comminuted mechanically to bring them down to a size such that 
retorting (or extraction of oil by partial burning) can be carried out. Since comminution 
takes time and money, large fragments (exceeding about 50 cm in diameter) are unde- 
sirable, and so are small pieces (less than 0.5 cm) since these clog up the retort. The 
mining has to be planned accordingly and, while one rarely has control over the geo- 
mechanicalproperties(faults, cracks, etc) of therock, one canstillvarysome parameters 
of the mining, namely, location of explosion boreholes, temporal sequence of 
their activation and type of explosive. By correct choice of these one can hope to obtain 
a fragment size distribution uith the desired properties of not having too many pieces 
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outside the lower and upper limits. The task at hand is thus the dcrivation of a fragment 
size distribution in the context of a physical process (the passage of detonation stress 
waves) and in a given geometricsetting(s0me borehole pattern and major fault structure 
in the rock) (Jaeger etal1986h). At the same time, several physical factors will remain 
unknown, like subsurface joints and cracks, leaving the theoretician with an under- 
defined assignment. 

It would appear that the maximum-entropy method (MEM) is an ideal tool to handle 
this situation and others in which we wish to predict fragment distributions. Reasons 
both favouring and opposing this expectation are outlined in the next section and in 
appendix 1, where we return to a discussion on the claims of MEM. 

Fracture of solids as a physical process is the subject of appendix 2. 

2. The method of entropy maximization 

Let us denote by j the events that we wish to predict (like the event of findingn fragments 
ofagivensize in a debris heap) and bypi thecorrespondingprobabilities, We thenassert 
that the MEM gives the most conservative probability distribution p, subject to the 
available knowledge, which enters the formalism as ‘constraints’. The maximum- 
entropy solution is that which maximizes the information entropy (also called ‘missing 
information’) 

(Shannon 1948) subject to the constraints. The constraints are assured mathematically 
by Lagrange multipliers (appendix 1). 

The meaning of ‘most conservative’ in the assertion of the last paragraph is twofold. 
First, the MEM probabilitiesp, are about the smoothest, flattest functions of the events j 
(suitably ordered) consistent with the constraints; secondly, the predictionsp, make do 
with just the constraints explicitly imposed and not with any othcr constraints perhaps 
tacitly implied (inobtainingnon-MEMp,). The latter meaning provides asimple, heuristic 
proof of the assertion. It can be shown that imposing any additional constraints reduces 
S, i.e. it reduces the ‘missing information’. If our choice for the probabilitiesp, is non- 
MEM. this choice will reduce S below its maximum value and will imply some extra 
constraint. Therefore the MEM solution is the only one consistent with the explicitly 
stated knowledge. 

More impressive claims have also been made for the MEM as a predictive method 
(Jaynes 1983, Skilling 1984, Rosenblatt-Roth 1987, 1988). In  the context of frag- 
mentation, one can show that, if N independent fragmentation experiments are 
performed, the mean of the size distributions will tend, asymptotically as N - ,  a, to the 

A consistency criterion was enunciated by Tikochinsky eta1 (1984) in the following 
sense: the distribution of MEM is the only one that will be confirmed by successive 
repetition of experiments. 

In viewoftheexistenceofseveral time-honoured and practised predictive procedures 
(like maximum-likelihood, least-squares fitting, Bayesian predictions), the preceding 
claim is bound to have raised opposition (Titterington 1984). To answer this, Skilling 
(1984) writes: ‘I find theargumentsfor usingmaximumentropy to  bedeeplycompelling. 
[MEM] stands in splendid isolation. on fundamental grounds.’ 

MEM Value Of p,. 
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But even this is not all, since according to Jaynes (1983), MEM predictions cannot be 
mistaken: if they are not supported by experiment, they must he regarded as disclosing 
(the need for or existence of) additional informational constraints. Jaynes is to be 
credited with the use of information entropy as a predictive tool in physics and this 
review does perhaps no more than describe the implementation of this programme for 
fragmentation. In his works (collected in Jaynes (1983)) thermodynamic entropy is 
represented as a measure of the insufficiency in our knowledge of a physical system. In 
an opposite view (Denbigh and Denhigh 1985) thermodynamic entropy is regarded as 
an objective attribute of the system. In a compromise approach (Zurek 1989) the 
thermodynamic entropy is a sum of contributions of physical randomness and of the 
observer’s ignorance. 

Without taking sides in this controversy, we wish to demonstrate here that the 
maximum-entropy solutionpj with energy Egiven is formally identical to the minimum- 
energy solution Pi with entropy s given. With the introduction of Lagrange multipliers, 
denoted by p ,  Y and T, p (respectively) for the two problems, the quantities (henceforth 
called Lagrangians) to be extremized are 

L = s - p ( E  - E )  = - x p ,  logp, - p E E / P ,  - E - U x p ,  - 1 
I ( ,  ) ( ,  1 

and 

- A = E - T ( S - S ) = ~ E ~ P , + T  x P l l o g P l + s  1 - p  (, x P p , - l  1 . 
I (, 

p, = PI = exp(-e,/T)/x exp(-E,/T) 

(3) 

The sets of equations J.L/Jp, = 0 and Jh/JPl  = 0 have evidently formally the same 
solutions. These become equal, 

(4) 

if one supposes the relations 

T =  p-1 = EIS.  ( 5 )  

Clearly equation (4) is also the solution obtained by minimizing the free-energy 
expression (for temperature T given). The maximum-entropy procedure would thus 
appear to be beyond doubt, but questions remain whether the system (especially a 
classical one) is truly ergodic over the events j .  

3. Distribution of fragments 

3.1, Exponential distributions based on MEM 

Apparently theearliest useof  for fragment sizedistribution isdue toGriffith (1943). 
He supposed that: 

(i) a given quantity of energy is converted to fragmentation (this quantity depending 
on the nature and intensity of the fracturing process); 

(ii) the energy goes entirely into the creation of free surfaces; and 
(iii) each molecule in the solid competes for the available energy on equal footing. 
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If N, denotes the number of molecules belonging to s-sized fragments, N,/s is the 
number of s-sized fragments. The energy invested in each fragment is y ~ ? ’ ~ g ,  where y is 
the surface energy density andg a geometrical factor. The constraint is 

so that identifying cj in equation (2) with ygs-’l3 and regarding the solutions in equation 
(4) one derives 

h’, = exp(-d/sl”) (7) 
where A is a constant to be evaluated from equation (6). In practice. in the break-up of 
solids, the number of fragments NJs decreases with size much faster than that given by 
equation (7), indicating that assumption (iii) places too much weight on large fragments 
and that sinks of energy other than the surface energy (involved in assumption (ii)) are 
also present. Moreover, moleculesin the middleof the fragment do not feel the fracture 
processin thesame way asdomoleculeson thesurface. Weshallsee that when fragments 
are formed by accretion of molecules, assumption (iii) has an empirical basis (section 
6.4). 

In a discussion of the size distributions of exploding shells and of other two-dimen- 
sional objects, Grady and Kipp (1985) used only a geometrical constraint, namely 

A = g n,s 

meaning that the number ns of plane fragments of sizes times their areags (where 6 is 
again a geometrical factor) sums up to the total area A. The MEM soution is clearly 

n,  0: exp(-gs/A). (9) 
This is to be contrasted with the semiempirical distribution due to Mott (1947) (see also 
Mott and Linfoot 1943) in which the cumulative distribution arising from n, is an 
exponential function of the linear size, namely sliZ in two dimensions and s’” in three 
dimensions. Data on metallic shells have been accounted for by Mott’s distribution 
(Sternberg 1973). though discrepancies appear, which are treated in greater detail in 
section 6.1. Deviations from Mott’s law have been found in fragmented rock data and 
in a numerical simulation (Englman et a1 1984). 

3.2. Fragmentation by a fast, sudden process 

Fracture by fast energy input, such as occurs in explosions, projectile or laser impact, a 
shattering event, explosive expansion or a sharp temperature change, has been the 
subject of dynamic theories (Mott 1947, Grady 1982, Grady ef a1 1985, Glenn and 
Chudnovsky 1986, Glenn et a1 1986, Curran et a1 1987). 

These theories are incorporated in the probabilistic prediction of fragmentation that 
we describe now. Characteristic of fast processes is that fracture events take place at 
different points of the solid independent of one another. This is because newly created 
fractures have no time to communicate with each other, except that the energy invested in 
the fracturecannot exceed the totalenergy available for fracture andthat the fragmented 
volumes are also bounded by the original volume. Following Grady (1982), we suppose 
that all discontinuities formed by the stress wave (e.g. cracks, voids) immediately 
become faces of fragments. An alternative view, which remains to be explored, would 
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be to suppose that in the first place the fast process creates fractures that can then join 
up to enclose afragment. The advantage of this second view is that unfinished fractures, 
called ‘internal damage’ (Jaeger et a1 1986a, c, Yatom and Ruppin 1989) are also 
envisaged to be present as the result of stress. 

Following a more detailed account in the original paper (Englman eta1 1988b) we 
associate with each fragment of linear size a an energy e(a)  (see equation (10) below) 
which in essence contains all the physics entering the formation of fragments (fisure 1). 
Summing e(a)  over all fragments, we equate the sum to the total energy input E for the 
fragmentation process: this provides the first constraint (equation (15) below). Implicit 
in this procedure is the assumption that at the instant of fragmentation all secondary 
featuresoftheprocess(suchasheat,noise,fragment moti0n)stillresidein thefragments. 
Our way of invoking energy conservation differs from that of Glenn et a1 (1986), who 
balance the created surface energy against the kinetic and stored energies. The present 
approach appears justified (barring the role of expanding gases formed in an explosion) 
because it includes the physical state of the fragments immediately after fragmentation. 

We assume fragments of linear size a and roughly spherical shape whose energy 

e(a) = ( h / 3 ) p u 2 a 3  + ( k / 5 ) p i 2 a 5  + (4n/6K)u2a3 + 4nyaz(1 - a / R )  (10) 
consists of the following terms: the kinetic energy (U) of the fragment of mass density 
p moving as a rigid body with speed U (this term takes up the largest part of the energy); 
the internal KE about the centre of mass (expressed in terms of fz, the volumetric 
dilatation rate squared, or the trace of the square of the stretching tensor); the stress 
energy stored in the fragments (Glenn era1 1986) including sound and elastic waves (u 
being the stress and K the bulk modulus); and the surface formation energy ( y  is the 
surface energy density and R is the radius of the spherical solid before fragmentation). 
Other terms depending on size a or on other variables (e.g. shape or chemical compo- 
sition) may be added to equation (IO). 

The probability of having n, fragments of size a is written 

P(n.>n)  with E p ( n . , a )  = 1 (11) 

(E.) = Z n,p(n, ,  a )  

w(a)  = (4.n/3)pa3(n,). (13) 

W =  x w ( a )  = W (14) 

E = E e(a)(n,)  = & 

“a 

and the most likely number of such fragments and their masses are, respectively, 

(12) 
“0  

and 

Assuming that a fixed mass *of materials is being fragmented, we have the constraints 

and 

(15) 

where the second constraint is due to energy conservation. 
(In equation (ll), we have chosen as the fundamental event whose probabdityp(n,, 

a)  is sought the finding of n, fragments of linear size a ,  rather than the event of finding 
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at random an a-sized fragment, whose relative frequency isp(a). Our choice reflects the 
practice in mineral processing of the operation of sieving.) 

In the sense of the MEM, the best distribution p subject to the constraints is obtained 
by maximizing 

L- - ~ ~ p ( n ~ , a ) I o g p ( ~ ~ ~ , u ) - ~ p ( ~ - ~  - p ( ~ -  .Ci? (16) 

through variation ofp(n,, a) and adjusting the Lagrange multipliers p and p so that the 
constraints (13) and (14) are satisfied. 

a no 

The solution is 

where 

and 

for the majority of fragments, i.e. excluding large-sized fragments, for which x ,  > 1. 
whose mean number decreases exponentially. In (18) the fragment mass and energy are 
bothpolynomialsina,withpowersOrangingfrom2toS(equation(lO)). In asizerange 
where asinglepower lawdominatesin(18), thedistributionof sizes will exhibit apower- 
law behaviour in the form 

with the 'fractal dimension' D being given in terms of the predominant values of 0 as 
D = O - l .  

Turcotte (1986) has listed 21 objects whose fragment size distribution behaves 
according to (21), with D falling between 1.5 and 3.5, i.e. conforming to the theoretical 
values in equations (lo), (18) and (20). Experiments on simulation of astroid impacts 
gave D - 2.5 (Capaccioni et all986). 

To determine the parameters /3 and .U in the distribution (n)  (equations (18)-(20)) 
from the constraints, we first combine (14) and (15) to write 

where the summation is over all sizes that are collected in discrete bins. Let the number 
of bins (or summands) be I,, then 

I c I, (23) 

since the summand is less than unity. The dominant contribution to e(a) andx, is a term 
proportional to the fragment volume a3, Thus, I is proportional to io. 
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\ I ,  '0 
Figure 1. Forces acting on a fragment. The figure 
illustrates the body forces pu (inertial) and o 
(uniform stress), the surface energy density y 
and the transverse dynamic strain <. 

0.1 il\. I 0.0 

0.01 0.1 1 10 IW 
sR 

Figure 2. Weight distribution of fragments, 
equation (24). The weight w(a) and the linear 
fragment size a are normalized to their values at 
& (equation (26)). Beyond aid - 10' the dis- 
tribution drops off exponentially with a and 
equation (24), on which this figure is based, is 
not applicable. The parameter v in equation (27) 
has the value 10.'. 

The weight distribution (13) for the majority of fragments (equation (10)) is 
expressed in a reduced form as 

w(a)  = W I - ~ / ( ~ V S - '  + 1 + v s 2 )  

s = a/& 

It has a maximum at a = 6, given by 
d = ( 5 y / p .  '2 ) In 

which serves as a convenient scaling parameter for the fragments (Grady 1982). The 
other parameter v in the distribution (24) contains the multipliers p and p ,  whic' I, must 
be eliminated by calculating the mass (or weight) constraint (14). The result is 

v = (n/3)(d/ll)' (27) 

where l i s  the bin width, so that, as shown in equation (22),  Ilis the effective size range 
scanned by the sampling process. The saddle-point d must fall well inside the size range, 
so that 

Y < 1. (28) 

The weight distribution, shown in figure 2 ,  has a maximum at a = 6, is broad, and is 
asymmetric. Thus, the maximum derived by MEM coincides with the characteristic 
fragment size of Grady (1982) and depends (through equation (26)) only on the dynamic 
fracture parameters y and iL. On the other hand, d is independent of either the centre- 
of-mass KE or of the stored stress U, or indeed of any contribution to the energy that is 



1026 R Engiman 

proportional to the fragment volume 4xa3/3 .  The mathematical explanation for this is 
that in the summand of (14) ,  

allsuchcontributionsappear asan additiveconstant to the Lagrange multiplier f i , which 
is a parameter to be adjusted. 

The empirical role of h is well documented in the fragmentation of oil shale (Grady 
1982). brittle steel (Weiner and Rogers 1979) and rapidly heated water (Blink and 
Hoover 1985). Since wefindthdt,ingeneral. themeansizeaveragedoverthedistribution 
exceeds its maximum ci, a more careful determination of the average and a specification 
of the averaging procedure are called for. 

In 'cratering' situations, where only part of the so!id is fragmented, the constraint 
(14) on the total weight W does riot apply and p does not enter. Yet, remarkably, 
elimination of the parameter f l  leads to the same distribution (24) as in the fixed W 
situation. This was subject to test when fused alumina cement targets were partially 
(-30%) and almost fully (90%) fragmented by fast aluminium projectiles (Bianchi eta1 
1984). The fractal exponentswere, respectively, D = 2.76and3.06, whichdonot support 
our result, though their magnitude is within the range predicted in equations (lo), (18) 
and (20). 

w(a)  = 2 1 1 .  - a'x;' = [pe(a)/a' + p]" 

The weight bvof the crater mass scales with the energy input E according to 

The threshold energy input E,  below which fragmentation cannot occur (the con- 
w = (hpECi/9y)(d/Il)?. (29) 

E ,  = 4xyii2(ci/l).  (30)  

straint equation (15) having no solution) is given by 

A different threshold energy for fragmentation, resulting from a geometrical constraint, 
was obtained by Yatom and Ruppin (1989). 

A striking result of the MEM distribution is the prediction of fractal distribution, 
equations (17)-(ZO), with fractal exponents in the range of the observed ones (Turcotte 
1986). The result depends on two circumstances: first, on the property that the energy 
and volume terms. given by e(a) and a3 ,  go to zero as the size a vanishes so that there is 
no contribution to  the constraints from 0 - 0 ,  admitting of a 'Bose condensation'; 
secondly, on the absence of a constraint on the total number of fragments. Since 
the latter circumstance is tied to the non-atomistic description, it seems that fractal 
distributions might be the rule for classical objects. We emphasize though that fractal, 
inverse power-law behaviour is predicted only for the low size end: at large sizes an 
exponential decrease with size takes place. In our discussion of experimenlal dis- 
tributions in the sequel, the question of power-law versus exponential form will come 
up frequently. 

In summary of this section, an essentially simple, two-parameter (6 and U) dis- 
tribution (equation (24 ) )  has been derived, based on the broad principle of maximum 
entropy and incorporating the physics of fragmentation through the energy of fragments 
of size a (equation (10)). The typical Grady fragment size has been rigorously rederived 
and identified with the saddle-point d and the maximum of the distribution; d was found 
to be unaffected by mechanisms that are coextensive with the fragment volume. 

3.3. Statistics of propagating fragmentation 

In the previous section we have described a fragmentation process that is fast. sudden 
and happens in space uniformly. In contrast, 'propagating fragmentation' designates a 
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process wherein a medium gets fragmented over an extended duration of time and in an 
extended volume. The ‘source term’ driving the fragmentation is space- and time- 
dependent. By maximizing the information entropy density at all times and positions, 
subject to  constraints involving the source term, we obtain fragment size distributions 
that are fully determined by the source term and the strain rate. We shall find that weak 
(or strong) sources result in a size distribution that is sharply (or broadly) peaked around 
the most likely fragment size. 

This is the first instance in which the duration of the fragmentation process enters 
our consideration. We postpone a discussion of the temporal scale of fragmentation to 
a later section (section 4.2) where sequential fragmentation theories are reviewed; let 
us note though that MEM can bear extension to  processes developing in time (Jaynes 
1983, p287, Levine 1985). The present approach keepsclenr of intricate issues, such as 
thesuggestions that aperturbedsystem willevolve by minimal rate ofentropyproduction 
not far from equilibrium and by maximal rate of entropy increase when far from 
equilibrium (Prigogine 1978, Kaufman era[ 1989). 

We assume that the fragmented body can be subdivided into regions of unit volume 
that are sufficiently large for statistical considerations to be valid in each region and at 
the same time small enough that external forces or stresses can be regarded as uniform 
throughout the region. Regions are labelled by a convenient coordinate r and the time 
by f .  Fragments formed in ( t ,  r)  are characterized by linear size a = a((, r )  where a is a 
parameter specifying the fragment. More generally a might represent a set of fragment 
parameters (size, shape. composition, quality, etc), though we shall work with a as 
representing exclusively the linear size of the fragment. We seek by MEM the probability 

P@ll f r) with 2 p ( n a , r , r ) =  1 (31) 
rill 

of finding n. fragments in unit volume around position r and at time r having the 
dimension a.  Under the conditions posited, the total entropy of information is the sum 
of the entropies of the regions 

We maximize S ( f )  for all times, subject to constraints described in the following, to 
obtain first the probabilitiesp and then the mean fragment number per unit volume for 
fragments of type a, 

z (a ,  t, r )  = E n,p(n,, f ,  r) .  (33) 
n, 

The expectation value of any quantity Q(a)  is given by 

The physical foundations of the method are some theoretical or empirical relation- 
ships between the parameter of fragmentation (a) and the parameters of the physical 
process that causes fracture. The relations are expected to have the form 

of which a particular case might be 

where on the left we take an average over a function of fragment sizes a at time t and on 

F(fragment parameters) = q5 (stress parameters) 

(F(a ,  t)) = $(U@’), t’ s t )  

(35) 

(36) 
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theright we haveafunctionofthe historyofthestresspulseoupto thetimef.Numerous 
forms of the functions in (36) have been considered in the past (Curran et ai 1987, 
Kachanov 1986). 

We shall postulate an energy balance formulation (Tuler and Butcher 1968, Kach- 
anov 1986) equating the energy residing in the fragments with the energy input invested 
up to timet by the source. As already written in (15) 

2 +)$(a, t ,  I )  = Qt, r )  (37) 
Y 

where 

E = W X D  (38) 

(39) = U' x ( A  lo' [u(f') - U,,]" dt' . j 
On the left in equation (37) is the sum over the energy density functional for fragments 
of size a ,  while on the right appears a semiempirical relation for the energy input in unit 
volume required to create the fragments. In (39). o(t) is the stress at time f and position 
r, uo is a threshold for fracture. (In a more realistic treatment one should use several 
thresholds for different kinds of stresses: compressive, tensile, shear.) W is the energy 
at full nominal damage that specifies the energy needed to produce the damage D = 
D(t) defined by the large parentheses. A is another empirical constant that depends 
primarily on the properties of the medium: its mechanical strength and its state (e.g. the 
population of microcracks). The power n in the integral is commonly taken as 2. 

The stress o(t) represents the external source of fragmentation. It is regarded in this 
study as an input parameter. being a function of the distance from the location of the 
energy deposition and of time. Theoretical and empirical estimates of u(f) take into 
account theintensityofthe source (e.g. thepowderfactorofexplosives), thestressinput 
rate and the elastic constants of the medium. The stress U decreases oscillatorily with 
both rand r ,  due to geometry and dissipation. In truth, the energy loss due to fragment 
formation itself reduces U and it is necessary to use a U that is self-consistent with both 
the energy loss and the degradation of the medium. For an inhomogeneous medium 
(e.g. with substantial variability in crack densities inside it) A and W will also have a 
distance- and time-dependent behaviour. 

The energy functional e(a) in (37) was given in (10); we rewrite i t  as 

e(a)/2z = &puza3 f $u2a3/K - 2ya3/R i E , / ~ x  

E. = 2ni2aS/5 i 4nya2. 

(40) 
where 

(41) 
The separation of terms in (40) distinguishes between terms witha'dependence and 

thc two terms in (41) with a different variation. Since by construction we partition the 
fragmented material into regions of unit volume, for which following constraint holds 

(a3)  = 1 (42) 

having normalized for convenience to a cubic rather than spherical volume, the expec- 
tation values of the first three terms in (40) are constant. Physically this means that the 
energy input for fragmentation &is fully expended on E~ in (41), whereas the first three 
terms consume energy in a way that is independent of the state of fragmentation. 
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Maximization of (32) subject to the constraints (37) and (42) leads to the following 
probabilities 

p(n . ,  I ,  r) = exp[-n.(p&, - V.~)I/E exp[-m,p&, - .a')] (43) 
* e  

where the Lagrange multipliers p and U serve to satisfy (37) and (42). The expected 
number of fragments per unit volume is, according to (33), 

n ,  = [exp(p&, - vu3)  - I]-'. 
The constraint equations give, for each form of the energy functional e(a), a universally 
valid solution as a function of Eonly , i.e. independent off and r. The physical mechanism 
for fragmentation enters through the dependence of E on r and t (an example for which 
is the integral shown in (39)). 

To describe the variation of the Lagrange parameters p and U with E we find it 
convenient to transform them to dimensionless form, 

p' = 2ny62p (44) 

(45) 

ri = (Sy/p&Z)'/3 (46) 

I = (s3) = C s'n(s) 

= 63u 

where 

is alength characteristic of fragment size (Grady 1982) shown in equation (26). With the 
choice of (46) for the length unit the equations determining p' and U' are 

(47) 

E' = E/2nya2 = (2s' + ss)n(s)  (48) 

n(s) = {exp[/?'(bz + ss) - d s 3 ]  - I}-'. (49) 

&'(S)/S3 = 2s-' + s2. (50) 

In these units the ratio of E, to a3 is 

As shown in figure 3, for E'-+ m, U' tends to the value -1,0534, while p' varies 
exponentially as exp(-1/2) u'lE') .  As the energy input decreases, p' increases and U' 
changes sign. In the limit p' approaches infinity and U' approaches 3p' from below. 
However, the limiting value of the energy E where this occurs is not zero, but 3+,  or 
for the physical energy in (48) 

E - E , ,  =6nyd2. (51) 
This remarkable result of an energy threshold dictated by statistical requirements, 

and additional to the crack-mechanical threshold implied by uo in (39), will now be 
interpreted on the basis of equations (47H49). In the simplest terms, for the mean 
energy to be large, n has to be large, and this is tantamount to the exponent in (49) being 
small. Therefore p' decreases steadily with increase of energy input, as seen in figure 3. 
However, the increase of n has to be kept in check, since the expectation value of the 
volume isconstant (equation (42)), and thisisensured by theotherLagrangemultiplier 
U' having the tendency to counterbalance the decrease of p'. More illuminating is the 



1030 R Englman 

0 

-0.5 

- 1  

Figure 3. Lagrange multiplier parameters in the distribution as a function of the energy 
input E' responsible for the fragmentation. The energy multiplier p' (left-hand vertical 
scale) and the volume multiplier v' and U' - 38' (right-hand scale) are shown, all in 
dimensionless units (equations (44), (45) and (48)). The asymptotic behaviours of p' and 
U' are shown on the far right. 

behaviour of the distributions (shown in figures 4(a)-(c)) as the energy E' varies. We 
note that the energy functional E @ )  goes ass' and s5, while the volume varies ass3. Thus 
E ( S )  dominates for both large and small sizes, while the volume may do so at intermediate 
ones. (The ratio of the two quantities, equation (50),  is minimum at s = 1.) Therefore 
the distribution is broad for large energy inputs and sharpens towards the value s = 1 
for small E' (see figure 4). At its extreme sharpest, the volume or energy distribution 
acts as a delta function and the ratio of the energy and volume expectations is given by 
3 (equation (40) at s = l ) ,  which represents the threshold for energy input per volume 
u3.  For smaller energy input a maximum-entropy solution does not exist and the dis- 
tribution is likely to be an irregular, haphazard one. 

The general trend of our results, including the interesting sharpening of the dis- 
tribution at small energy inputs, holds for energy functionals different from that in (40) 
and (41), provided the energy/volume minimum occurs at finite sizes. This permits the 
generalization of our results to include a term 

CS = (52) 

where Cis  a constant and z -- 4.5, which represents the energy expenditure in creating 
internal damage (i.e. cracks that do not join up to form fragments) (Jaeger et al1986a, 
Aharony et af  1986). 

The distribution in (49) allows, formally, fragments of size larger than the unit 
volume, into which the medium was subdivided. To lighten the paradox, one must 
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Figure 4. Distributions as a function of the reduced fragment sue ala or  s; a is shown in 
equation (46). Plotted are: (a) A. the expected n u m k r  of fragments per unit volume 
(equation (49)); (b) a%, the expected volume (in units of a'); and ( c )  e& the expected 
energy (in units of 2 . ~ ~ 6 3 .  In the figures: (i) is for a strong source of fragmentation, E' = 
1.26, 6' = 0,001, Y '  = -1.03; (ii) is for an intermediate strength source, E = 3.62, i3' = 
1, Y' = 2.48: (E) holds for a weak energy input source, E' = 3.06, 6' = 10, Y' = 29.85. 
The distributions sharpen as the energy input decreases. Note the changes in the vertical 
scales. 

regard the distribution as referring to an ensemble of fragmenting bodies, in which the 
occurrence of a fragment larger than a unit adds to the weight of distributions in 
neigbouring regions. 

4. Alternative theories of fragment distributions 

Several theoriesgiven,, the distribution function of fragments of sizes (nJ is the number 
of fragments of size s (s-fragments)). We describe some of these. Summaries from 
differing viewpoints are due to Dehn (1981), Grady and Kipp (1985) and Campi (2989). 

4.1. Geometrical methods 

4.1.1. Poisson statislics, The linear, ID distribution is easily derived and will turn out 
to be of interest also in higher dimensions (in connection with the so-called Mott 
distributions). To avoid boundary effects we consider a ring of perimeter length L which 
is broken up into Ppieces by randomly placed cuts (figure 5). The probability of obtain- 
ing a piece having a size between s and s t dr, anywhere, is equal to the product of 
probabilities of placing one cut anywhere (=I) ,  of placing a second cut in the interval 
(s,s + dr) measured from the positionofthe first cut (probability = dr/L),ofnot having 
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Figure 5. One-dimensiondl Poisson process. A 
ring is broken up into n (here 9) segments by n 
randomly placed cuts. 

Figure 6. Percolation construction of fragments. Elementary segments of size b are chosen 
randomly with a probability p .  resulling in compound fragments of sires 2b, 3b and 4b.  
An equivalent approach is to choose fragment voids with probability ( I  - p ) ,  

any of the remaining P - 2 cuts falling in the interval (probability = [ (L  - S ) / L ] ~ - ~ )  
and multiplied by the number of cuts (= P - 1) following the first. Altogether 

ds L - s  p - '  
dsn,(P) = 1- ( - ) (P-1). (53) 

In the limit of L/s and P being large numbers, this reduces to 

n,  = (I/$) exp(-s/f) (54) 

where i = L/P is the mean size. 

and exponent according to 
In units wherei  = 1 and definition of a new variate z through changes of mean, scale 

s = [ ( z  - zO) /P] ' !q  

one obtains the Weibull distribution 

where 1/q iscalled the shape parameter. 

4.1.2. Percolation statistics. In a ID discrete network consistingof L cells of length b (as 
shown in figure 6)  the 'elementary'segment sizes (cells) are fixed (b).  Larger fragments 
of size sb can form by joinings contiguousfragments, separated from neighbouringones 
by the presence of the edges of empty cells whose probability of occurrence on each cell 
is (1 - p ) .  The number of s-fragments is 

n , ( p )  = LpP"-l(1 - P ) ~ .  (56) 
For more details on percolation in one, two, three and higher dimensions, see 

Stauffer (1979,1985). Deutscher eta1 (1983) and Zallen (1983). 



Fragments of matter from a maximum-entropy viewpoint 1033 

Table 1. What is fixed and what vafies in Poisson and percolation statistics (Campi 1988). 

Poisson Percolation 

Fixed Number of cuts (P) Probability of segment (p) 
Variable Probability of segment Number of fragments 

Table 1 sets out the relation between percolation and Poisson statistics. It can be 
shown (Campi 1988) that the mean or expectation number of fragments of all sizes, 
namely 

equals L(l - p )  so that in percolation 

p = 1 - z n / L  = 1 - P / L  (57) 

where we have replaced En by P, the number of cuts featuring in the Poisson statistics. 
Inserting this result in (56) we obtain 

n&) = exp[-(P/L)sI(L/P) 

which agrees with the result for Poisson statistics. Size distribution of fragments (or, to 
use the more common term, of clusters) near the percolation limit p --f pc can be shown 
tobederivablefrommaximum-entropyprinciples(section5). It hasalsobeenshown that 
when the cells are identified with crack positions, fragmentation of a three-dimensional 
object occurs, within the percolation description, as a sudden transition with a crack 
concentration p = pCLl (Aharony et a[ 1986). This is higher than the usual critical con- 
centration for percolation p C ( - p , , ) .  The reason is that at pcl one gets a continuous 
structure of cracks in the solid without the solid breaking up into pieces. This (namely, 
fragmentation) occurs only at a higher crack concentration, for p = pC,, or higher. 
Computed fragment statistics are shown in figure 7 and are compared with an exper- 
imental distribution (Englman etal1984). 

4.1.3. Tessellation. Cutting up a plane with lines or a solid with planes, or, alternatively, 
forming Voronoi polygons or polyhedra, are further ways of constructing fragments. 
The essential difference from the physical standpoint is whether one allows lines or 
planes to cut across each other. (As a rule, true cracks do not intersect except when their 
propagation velocity is high.) Extensivesimulationswithrandom lines in two dimensions 
by Grady and Kipp (1985) have indicated fragment numbers that decrease exponentially 
either with the linear dimension (‘Mott distribution’) or with the area of fragments. In 
simulations by Sprecher (Jaeger et al1986a, c) the internal structure of fragments was 
also studied. We mention these, not only to correct the imbalance in this review, which 
deals almost exclusively with fragment sizes whereas other parameters of fragments are 
also susceptible to statistical treatments, but also to stress the importance of unfinished 
cracks within the fragment (‘intemal damage’), which can take up a substantial part of 
the energy available for fracture. 
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Leaving aside the question of physical justification for intersecting cracks we can 
provide a heuristic proof for the Mott distribution generalized to higher dimensions 
d ( > l ) ,  namely 

n, cc exp[- (sip)"']. (58) 

The proof assumes a high density of interesting randomly thrown cracks, such that most 
fragments have the minimum number of sides, i.e. triangles in a plane and tetrahedra in 
space. A d-sided object is not yet a fragment, but must await the arrival of another side 
(the (d + 1)th crack) to become one. This will fall on the d-sided object at a distance 
from the opposite apex that follows a Poisson distribution: hence the distribution law in 
(58), which is Poisson-like in the linear dimension. 

4.2. Kinetic disfriburion 

We now describe theories in which a sequence of fragmentation stages is considered, 
such that each stage retains the memory of the preceding one only by the size of the 
fragments that are present, not though their state of stress (McGrady and Ziff 1987; 
Cheng and Redner 1988, Derrida and Flyvbjerg 1987). The results appear to be inde- 
pendent of the physical causes of fracture, yet there is a prediction of 'shattering 
transitions' in which the numbers of small fragments multiply to infinity as the size of 
the fragments decreases. 

The following integro-differential equation gives the number of fragments N(s,  I )  of 
size s at time I in terms of the rate I+) of s-fragments breaking up and the channelling 
ratio K(s', s) (this quantitygives the fraction of s'-fragments (s' < s) created out of the 
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original s-fragments) 

r(r(s, t )  = - v(s)N(s, t )  + v(s')N(s',  t )K( s ,  s') ds'. (59) r 
Constraints include mass conservation 

p K ( s ' , s ) d r '  = s  

and a postulated mean number ii of fragments created at each step (e.g. 2 upon cutting) 
given by 

K(s', s) ds' = n. (60) 

A problem that can be solved exactly is 

v(s)  a si 

(e.g. A = 1 for random cutting) 

K(s,  s ' )  = b(s/s')/s' (61) 
(e.g. b = 2 for random cutting when ii = 2 in (60)). 

The initial condition N ( s ,  0) = S(s - L )  for a single piece has the solution 

N(s,  r )  = e-$'[S(s - L )  + 2t + t2 (L - s)]. 

The form in (61) 

b(s/s') = (s/s')" 

gives ii = (m + 2)/(m + 1). For negative m the number of small fragments rises leading 
to a 'shattering transition', in which an increasing number of tiny fragments is generated 
(Ziff and McGrady 1986, McGrady and Ziff 1987). 

4.3. Physics-based theories 

To my knowledge, apart from the MEM, which forms the subject of this review, there 
exist no theories of fragment size distribution that are rooted in detailed physical 
mechanisms. This situation is probably due to the difficulty of disentangling the 
stochastic and the deterministic aspects of fracture (Grady and Kipp 1989, Jaeger and 
Englman 1991). 

There are indeed physical theories of fracture, of which Mott's is perhaps the most 
notable (Mott 1947, Kipp and Grady 1985, Gradyand Kipp 1989). Thesegive, as arule. 
mean fragment sues, but not distributions. 

Furthermore there are also models of fracture (mainly in brittle media) and of failure 
(like yield in ductile solids (Tate 1967,1969)), Some of these are in the form of extensive 
computer codes, startingin the early 1970s with the one developed at Stanford (McHugh 
1983, Seaman et all984, Shockey et all985, Curran et all987) and simultaneously at 
Sandia (Davison and Stevens 1972, Davison et a1 1977), and continuing with several 
others (Rice 1975, Ravid and Bodner 1983, Ravid et a1 1987, Kipp et ai 1980, 
Taylor et a1 1985, Kuszmaull986, Brandon 1988). However, the quantitative measures 
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of fracture, failure or damage that are given by the codes, frequently by mapping them 
onto the interior of the disintegrating body, are not immediately translatable into 
fragment formation and into a distribution of fragment sizes. 

5. Maximum-entropy method and percolation theory 

It isof some theoretical interest toestablish alink between percolation theory and MEM, 
though most results are more easily obtained from numerical generation of percolation 
clusters than b y u s i n g ~ ~ ~ w i t h  theconstraintsimposed that are in any case theoutcome 
of simulations. In an early effort Kikuchi (1970) used a mean-field treatment to derive 
critical percolation probabilities by entropy maximization. The agreement with correct 
values was poor. 

Theeventsjin equation (1) for the probabilitiesp, are taken to represent the finding 
of n? clusters of size s per lattice site 

pi = p b , ,  3). 

We note that in percolation acluster arisesasaconnected entity of bonds(or sites) each 
of which is realized with a k e d  probability p ,  The mean number of s-clusters is 

x 

(n , )  = 2 P O Z ~ , ~ ) ~ ~ .  
n,=O 

The constraints are, as before, 

E p ( n s , s ) = l  
" 5  

foreachsmd the followingrelationsare given bystauffer (1981) todefinecriticalindices 
ru ,p ,yand6:  

In these relations E = Ip -pcI ,  where p c  is the critical occupation probability for pcr- 
colalion, and the subscript 'sing' represents the leading singular part of the sum which 
remains finite at p = p c .  

The MEM solution for the cluster size distribution is 
p(n$,s) = L - d  exp(-n,x, - A.') 

where 

and A' is a normalizing constant independent of the size L. The coefficients A ,  . . ., D 
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are fitted to satisfy the constraints (62)-(65). The fitting is not easy to carry out since 
several limiting processes are involved, namely E + O ,  h+0, L 
(sue of lattice)+ ”; however, it is clear that fors in some region (s large, yet smaller 
than L d )  the terms 

Cs2 + Ds(1 - e + )  

.xs = C’sz + D’s3 + O(h) (67) 

(n , )  = L - d ~ ; l  (68) 

will dominate the expression (66) for x,, Rewriting this for the given range of s as 

and noting that, for x, 1, 

we conclude that the mean number of clusters of sizes will show an effective power-law 
dependence of the form 

( n , )  s-‘ (69) 
where 2 < z < 3. 

For another, heuristic derivation of this result see Zallen (1983). Numerical esti- 
mation of cluster numbers nearp = pc gives in three dimensions z = 2.2, whereas more 
generally (with p # p,) the relationship in (69) becomes modified by a smooth bell-like 
function of s (Stauffer 1979). However, outsize cluster numbers decrease with size 
exponentially. 

The relation between fragment sues and percolation clusters appears to have been 
determined in the first instance by Englman et a1 (1984). A fragment is formed when a 
piece of material is fully surrounded by linear cracks (in two dimensions) or by crack 
plaquettes (in three dimensions). The size of fragments is given by the cluster size in the 
dua[ lattice, defined by placing a bond across a face where a plaquette is missing (or 
across a line where a crack is missing, in two dimensions) and removing a bond where a 
crackplaquette is present. The corresponding occupation probabilitiesinthe two lattices 
are related by 

Pdual = -Pcrack. (70) 
Fragment distributions forpCrack > pc (= the critical crack concentration) were obtained 
by a two-dimensional simulation and followed a modified Mott distribution law, with 
positive or negative deviations at very large sizes (Englman era[ 1984) (figure 7).  

Let it be remarked that mechanical failure of the solid occurs at pcrack = pcrr, so that 
the conditionpcnck >ptII will be achieved in practice through continued stress loading 
of the solid, while it is being held together artificially: either by confinement or inertially. 
In an impact loading (by projectiles, fragments or laser light) the confinement would 
not be expected to occur and the fragmentation would take place as soon aspEraek = pCIl 
obtains (Blackman and Goldsmith 1978, MacAulay 1987). Then one would expect to 
see the relation (69) in effect. 

6.  Experimental distributions in relation to MKH predictions 

6.1. Exploding cylindrical shells 

Cylinders made of Armco iron or of heat-treated steel were filled with explosives and 
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Figure 8. Cumulative fragment distributions from two tests by Mock and HoIt (1983) on 
metal cylinders. Total distributions are shown together with partial distribulions for types 
1-4, classified according lo fragment shapes and origin. The broken curves are theoretical 
hls in which the contribution of the strain energy term (equation (IO))  changes with the 
type number as follows: 1 2 4 3. The full curve for type 4 guides the eye. 

the resulting fragment size distributions analysed by Mock and Holt (1983) (figure 8). 
The cylinder walls were about 2 cm thick and the mean diameter about 20 cm, which 
makes it questionable whether to apply two-dimensional (shell-like) or three-dimen- 
sional modelling. However, the authors separated the fragments in accordance with a 
characterization scheme based on the nature (brittle or shear) of the fracture surfaces. 
Different fragment types (labelled type 1-4 in figure 8) had different mean mass per 
fragment. The type with the largest mean mass (type 1 in figure 8) followed a roughly 
exponential cumulative distribution, except for small sizes, as a function ofthe fragment 
mass M .  However, the types with smaller mean masses (types 2-4) showed a decrease 
with mass that was faster than that. The explanation is straightforward in terms of the 
formulae (10). (18) and (19). The small mean mass is indicative, by (26), of larger strain 
rate i. In formula (10) for the exponent in the distribution (no}> equation (19). the strain- 
rate term goes as a', or the 5/3 power of mass, to be compared with the inertial term 
going as the mass, which is expected to be dominant for the smaller strain-rate, type 1, 
fragments. 

A large number of fragment distributions arising from explosively shattered cyl- 
indrical shells wereobtained bgSternberg(l973) withvariationsin theshellcomposition 
and treatment and in the explosive. Asimple exponential (Mott-type) distribution failed 
to account for the data over the whole mass range and consequently a distribution was 
synthesized from three separate exponentials, appropriate to small, medium and large 
sizes. The MEM distribution in two dimensions is given as a function of linear dimension 
a by equation (19), wherex, takes the form analogous to equations (10) and (18) 

x ,  x Aa + Ea2 + Ca3. (71) 
With suitable choice of the parameterSA, Band C the MEM fits quite well the results of 
Sternberg (1973) for two combinations of steel and explosive (figures 9(a) and ( b ) ) .  

Exploding mild-steel tubes with wall thickness/diameter ratios ranging from 0.05 to 
0.17 wereinvestigated byStrongeetal(1989), regarding thedependenceofthe fragment 
size distribution on the fracturing mechanism. This was vaned through changing the 
explosive (charge) mass/metal mass ( C / M )  ratio over a 10-fold range. A two-dimen- 
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Figure 9. Distributions of fragments from an exploding metal shell versus the square root 
of the fragment mass (Sternberg 1973). The broken curves show two-dimensional MEM 
distributions. equation (71). in which a' represents the fragment mass and the parameters 
take the following values (in mass units of milligrains): (a )  A = 0.22, B = 0.05, C = 0.05; 
(b) A = 0.22, B = 0.05, C = 0.0625. 

1 I I I I 
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Figure 10. Mean mass fi of mild-steel fragments 
versus the charge/metdl mass C/M ratio (Stronge 
et al 1989). The broken curve shows the theor- 
etical result of equation (73). 

sional Mott distribution was assumed without obvious evidence. The mean mass 
decreased with C/M as seen in figure 10. 

In the theory the most likely mass A (a a3) varies with the strain rate as 

f i  r e - 2 .  (72) 
We can relate the explosivejmetal mass ratio to the strain rate by using the Gurney 
relation (Jones eta1 1980): 

v o  = [2G/(0.5 + hl/C)]'/2 (73) 

where U,, is the velocity with which the outer part of the cylinder moves and G is the 
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energyrelease by the explosive per unit mass. We associate the strain rate with uo/inner 
cylinder radius and obtain from (72) and the expression for uo 

The broken curve in figure 10 indicates quite reasonable agreement with the exper- 
imental data points. 

On the basis of a large number of fragmentation experiments with exploding cylin- 
ders. Lin ef al(1989) proposed a numerical fit for the number of fragments N,,, as a 
function of the dimension, hardness and composition of the cylinder and of C / M ,  the 
charge/metal mass ratio: 

where lis the thicknessof thecylindcr (cm), H its (Vickers) hardness and CPthe carbon 
content percentage. (It is appropriate to remark here that Mott's involvement in the 
mechanism of fiacture arose during the Second World War from his investigation into 
the difference between N,,, in Allied and German shells. Eventually it was all traced to 
CP, which increased the metal brittleness) (Mott 1984, private communication).) 

m 0.5 + ( M / C ) .  (74) 

N,,, = 177f + 107CP - 0.39H + (C/M)(-3250 + 10462CP - 2.52H) + 34.5 

6.2. Fragments in miniug operatiom 
I t  might be thought that a distribution with three free parameters, such as given by 
equations (10) and (19), is bound to agree with practically any experimental curve, 
especially when the cumulati'i'e distribution is plotted (on a logarithmic scale). The 
following example shows that this is not the case and that when sufficiently accurate data 
are plotted for a wide enough fragment size range the MEM distribution postulated in 
eqcation (10) can be discredited and, instead, another MEM distribution with different 
constraints appears to operate. Unfortunately, the latter constraints do not have any 
simple physical meaning. 

Boreholes of 3.2 cm diameter were filled with Donarite and exploded in an under- 
ground site of the Rotem (Negev, Israel) oil-shale fields of the PaMA company (Jaeger 
el ai 1986b). Post-explosion fragments were kept in place by chicken wire. collected 
from several locations and layers around the original boreholes, the pieces individually 
weighed and their distributions determined for each location. The derived distributions 
differed significantly. according to the distance of the locations from the centre and 
somewhat on their orientations (the terrain was anisotropic due to major faults). 
However, (quite remarkably) all distributions could be brought into coincidence by 
scaling the sizes at each location with a scale factor A(R) that increased monotonically 
with the distance R of the location from the borehole as R'.'5"0.3 (figure 11). 

We have not found it possible to fit the collapsed distribution with any set of 
Lagrangianparametersappcaringin equation (19). A least-squares fit ofthe parameters 
was not done. but the intuitively 'best' fits shown in the figure as broken curves are 
evidently inadequate to  reproduce the results over the four decades of linear size 
variation. A MEM distribution of the form 

n. = {cxp[(a/a,) + b log(a/ao)] - l}-' (75) 
was found to fit the observed cumulative weight distribution 

' 0 0  

reasonably well, with the choice and interpretation of the parameters as follows: 
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Figure 11. Cumulative weights of mined oil shale against normalized linear fragment size 
(Jaeger e1 a/ 1986b). Results from five regions, numbered according to increasing distance 
from the borehole, lie on the same curve when a length scale parameter A(R) is adjusted. 
The broken curves are based on equations (18) and (19). and are plainly inadequate. The 
full curve is obtained using equation (75) with parameters given in the text. 

a ,  (upper cut-off of size) = 2A(R) 
a. hlower cut-off of size) = 8 x 10+A(R) 
b (effective inverse power of distribution) = 3.43. 

The two functions inn. (a  and log a)  indicate the existence of physical constraints 
(appendix 1) on the distribution. The constraint on a can be accorded some physical 
meaning in terms of dense cracks (along the lines of the discussion in section 4.1.3); 
however, the constraint related to log a is obscure. 

In a similar type of experiment, though on a much smaller scale, Curran el a1 (1977) 
collected the ejectafrom thecrater formed by highexplosivesincontact with the surface 
of fine-grained quartzite rock. The number of fragments per unit fragment radius a ,  ne, 
follows (for about five decades of variation in no) remarkably well the power-law 
relationship 

na a a-2.’ (76) 
indicating the importance of the surface energy term (proportional to aZ)  in equation 
(1). (Figure 4.10 in Curran et al (1987) shows the cumulative number of fragments. 
The theoretical fit in the figure suffers from identification of fragment and crack size 
distributions in their equation (4.6).) The surface term is indeed expected to dominate 
for small fragments (a  6) and for such fragments we anticipate a power-law behaviour, 
like that in (76). 

6.3. Distribution of space debris 

Man-made debris in space exceeds the number of natural meteoroids and represents a 
danger to spacecraft (Kessler 1985, Rajendran and Elfer 1989). The fragments arise 
from defunct space vehicles that have broken up. exploded or become involved in 
collisions. Added to this are solid fuel particles. Three distributions are given as a 
function of the mass m (Johnson and McKnight 1987) or of the sizes. 
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Figure 12. Distribution of masses in space due 
to defunct, broken-up satellites. Broken curve: 
observation (described in the text). Full curvc: 
fit by a power law based on percolation theory. IO‘ lo‘ 103 
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Small fragments due to collisions have a power-law (fractal-like) distribution. 

n,  = c,s~’~”. (77) 

n,  = C,m-‘’* exp(-O.O575m”*) (78) 

n, = Cjm-’i2 exp(-0.0205mi”). (79) 

Larger fragments, but not exceeding 1960 g, follow the distribution 

with m in grams. For even larger fragments, caused mainly by explosions, one finds 

The coefficients C,. CI and C3 depend on the total masses included in the distribution 
and are not relevant to the expected distribution from a single event. In figure 12 we 
have combined the three distributions in one smooth curve and compared the resultant 
with the percolation result n, = s‘~.*. 

The experimental distribution drops slower than this prediction for small sizes and 
faster for larger fragments. In some sense, the prediction represents a simple averaging 
over the full range. 

6.4.  Charged atomic clusters 

Clusters consisting of l & l O z  atoms or molecules are of interest theoretically (as tran- 
sition species between molecules and solids) and experimentally (e.g. as potential 
catalysts). A review of early results was given by Phillips (1986). Clusters can be 
formed from the gaseous phase by accretion or condensation after passing through a jet 
(Levingereta/1988,Rayaneetal1989)orfromanimpactedsolid bysputtering(Wei1and 
er a/ 1989). The distribution of cluster masses can be obtained by time-of-Eight mass 
spectrometryand dependson the conditions under whichcluster sform (e.g. the ambient 
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gas pressure). The distributions are frequently peaked (as in rare-gas clusters Ar;) at 
magic numbers associated with favourable conditions for packing or with bunching of 
electronic (binding) energies (Knight er nl 1984, Stephens and King 1981). The broad 
envelopes of mass distribution, which are our concern here, generally possess a 
maximum, though exceptions from this situation do exist. Thus, counts of positively 
charged uranyl acetate clusters decrease monotonically for cluster sizesof up to 50 units, 
while the negatively charged clusters show a maximum. Charged clusters are easier to 
observe in experiments than neutral ones. 

Writing the MEM distribution as a function of the mass m in the form appearing in 
equation (19), namely 

where 

(cf equation (19)), we note that, for n, to have a maximum at a non-zero mass, at least 
some of the exponents in the above sum must be negative. We recall that the energy 
equipartition constraint of Griffith (1943) described in section 3.1 led to a negative 
exponent r = -113. 

This arose from supposing that the available energy was first distributed equally 
between all atoms or molecules, so that each atom absorbs a part of the order m-I and 
then expends this on the surface energy (which is proportional to m2/3). In addition, one 
can suppose that the absorbed energy is also expended on creating a transverse dynamic 
tension (analogous to the strain energy term in (10)) proportional to m5l3. Then in the 
sum (81) one also has a term with exponent r = 213. 

A fitting of expressions (80) and (81) to the mass distribution data of Levinger era1 
(1988) for Ar; was made, with the choice of the coefficients in (81), given (in Ar mass 
units) by 

a - l / 3  = 8.5 ay, = 15 

(figure 13). Fits of similar goodness were achieved to other data obtained by the above 
authors for Ar; and by Rayane ef a1 (1989) for positively charged indium and lead 
clusters, by choice of slightly different coefficients. The formation of small ions (m < 5) 
is probably due to factors not included in the energy constraint and for these the misfit 
isexcusable. It isnotable that theskewnessoftheexperimental distributionisreproduced 
by the theory. To end this section, we wish to stress this adaptation of the MEM to 
fragment formation bygrowth,rathertban by disintegration, asin therestof thisarticle. 

6.5. Droplers 

The distribution of droplets in a spray is important for the operation of fuel injection 
engines, for painting and elsewhere. The liquid column or sheet is unstable due to 
fluctuations and breaks into droplets that are subject to several forces (inertial, nozzle 
pressure, aerodynamicdrag by theambient gas). Studieshave beenmadeofdroplet sizes 
and velocities as a function of pressure and distance along the flow and perpendicular to 
it. Experimental investigations use phase/Doppler techniques (Bachalo er a1 1988, 
Sellens 1989). For a description of the subject, including an introduction to size dis- 
tribution results, the book of Lefebvre (1989) is of use. MEM were applied to obtain the 



1044 R Englman 

5 

R 

Figure 13. Counts of charged arson clusters against argon mass number n.  Full circles: 
experimental data obtained by time of Right (Levinger el of 1988). Open circles: theoretical 
results (equations (80) and (81) with parameters shown in text). 

* \ ' \ ' ' ,  
2UO 1hU 120 SI1 40 I1 

Drop size lum1 
Figure 14. A typical surface of droplet distributions as a function of linear size and 
downstream velocity. (After Sellens (1989).) 

joint, velocity size distribution function, employing constraints on the total mass, the 
surface energy, kinetic energy and total momentum (Sellens and Brzustowski 1986, 
Sellens 1989). It is. however. stated that 'it is simpler to measure the resulting spray, 
rather than the input conditions' (Sellens 1989). An example of the experimentally 
determined joint distribution is shown in figure 14 as a function of the droplet size 6 
(typically 10'pm) and velocity U. The theoretical distribution has the form shown in 
equation (A1.3), where q5 are functions of 6 and U entering the constraint expressions. 
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The marginal size distribution reproduces the observations satisfactorily, but in the 
U-6 correlations there are discrepancies. The use of correlations in MEM has been 
described (Englman et ai 1988b). In the experiments the mean velocity decreases with 
droplet size, due to the aerodynamic drag being more effective for small droplets, while 
the prediction shows constancy (since the drag is not formulated as a constraint). 
This situation differs from that typical for fragmentation of solids, where smaller-sized 
fragments fly off faster than larger ones (Grady et ai 1985). 'The latter result can in fact 
be regarded as a direct consequence of the momentum and kinetic energy constraints, 
which introduce the functions 

i#J = U63 and U 2 6 3  

intheexponentialin(A1.3),~0 that (theLagrangemultiplierA'beingpresumedpositive) 
smaller sizes lead to higher speeds. 

In a related subject, although many orders of sizes away, the condensation of 
interstellar clouds by fluctuations was considered (Kiguchi et a/ 1988, Narita et a/ 1988, 
Stahler 1983). Blobs, stars of 10-3-10-' solar masses, materialize by collapse and frag- 
mentation, and so do rings of up to 10' solar masses from rotatingclouds. 

Returning to Earth, we note the exponential distributions with a low size cut-off in 
one-dimensional composite fibres (Wagner and Eitan 1990). 

6.6. Nuclear disintegration 

A percolational critical point has been shown to operate in nuclear disintegration 
(Campi 1988, Gross 1990). High-velocity gold ions impinging on emulsion produced a 
distribution of fragments with charges between 1 and 79 (= the number of charges on 
Au), observed by Waddington and Freier (1985). Campi (1988) has found correlations 
between the second, first and zeroth moments of the size distribution that strongly 
resembled the correlations in a percolative system near p = pc. (Use was made of the 
relation (57) originally noted by him.) 

The largest fragment in disintegration can be associated with the cluster that tends 
to percolate (i.e. extend throughout the media) at critical concentration pc  and whose 
mass density is known as the fractal dimension (Zallen 1983). In a finite-sized nucleus 
the largest fragment size is related to the total mass of the nucleus by finite size scaling 
(Stauffer 1979). By proper identification of the largest fragments and of p c  in the 
experimental data of several atoms, Campi (1989) has found a fractal dimension that 
agreeswiththatforthepercolatingcluster. In thesame paper Campiproposedavaluable 
hypothesis, elaborated by Gross (1990), for the ergodicity of the percolation model, 
which is also pertinent to the ergodic behaviour underlying the use of MEM. According 
to this, the sudden fracturing event leaves the incipient fragments in an excited state, 
which probes all distributions in an ergodic fashion. At a later stage, a relaxation occurs 
in which massdistributions do not change any more. 

7. Conclusions 

Fragment distributions based on maximum entropy not only have theoretical soundness 
(alas, not universally acknowledged), but they also possess the merits of containing both 
probabilistic and physical components and of accommodating naturally exponential 
and inverse power behaviours (as a function of particle size). Various experimental 
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distributions have been well reproduced by MEM, though other ad hoc laws can do this 
too, except in the extremities of very small and large fragments. Some characteristics of 
empirical distributions (like fractal nature or possession of a hump) have their signature 
in MEM, leading (with some measure of certainty) to physically significant conclusions 
as to the breaking mechanism. 

Concerning useful extensions of the subject, one envisages future uses of maximum 
entropy for non-equilibrium phenomena, like rates of catalytic reactions involving 
particulates or fluid flow in fragmented media. 
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Appendix 1. On maximum entropg 

AI.1. Basics 

In the basic formulation of the maximum-entropy method (MEM) one maximizes the 
information entropy S with respect to the probabilitiesp; of events j ,  subject to the R 
observational inputs or constraints written as: 

W )  = Ep;+r(j) = (p(i)+'(,]di r =  1,2,. . . ,R.  (Al . l )  
I 

Summation or integration (for continuous variates) is over the range of variation. 

named Lagrangian (Rivier eta1 1989): 
Formally, and in practice, one maximizes the following function of probabilities, 

obtaining for the MEM probabilities 

pi  = exp[-A'+l(j) - . . . - A R Q R ( j ) ]  

(A1.2) 

(A1.3) 

in which the Lagrange multipliers are fitted to satisfy the constraints (Al.1). As already 
noted in the introduction, the MEM solution is characterized by a smooth behaviour as a 
function ofj. 



Fragments of matter from a maximum-entropy viewpoint 1047 

Examples of constraints are first, the normalization condition on the probabilities, 

and observed averages like 

(j) = Zpij and ( j z )  = Z p i j 2  
i i 

etc. Acceptable constraints are also observed frequencies of events, in the form 

(A1.4) 

(A1.5)  

Because of the presence of the singular function or 6 ( j  -io) in the exponent ofpj in 
(A1.3), the MEM solution is in general no longer smooth, but is probably still more 
conservative than alternative nOn-MEM solutions. 

In fact, the range of the variate j can also be written as a constraint, in the sense of 
zero frequency of occurrence outside the range. 

A1.2. Priors n(j) 
These are introduced as generalizations of the summations over the events in (A1.2) ,  
with the purpose of weighting each event by a factor lT(j), so that the entropy becomes 

(A1.6)  Sn = - Z W p ,  logpi 
i 

and a typical constraint 

(+)n = W p j W ) .  (A1.7) 

The priors are weights ascribed apriori (that is, without regard to observations) to 
each event and correspond to 'measure'in set theory. Skilling (1989) writes about them 
thus: TI is the Lebesgue measure associated with [the variable], which must be given 
before an integral can be defined.' A possible probabilistic interpretation identifies the 
priors with subjective beliefs or reliance attached to the events. Physically, priors may 
be related to instrumental effects. A n  example of this is the photofragmentation studies 
of Arz cluster ions (section 6.4) .  In making a statistic of the number of detached ions as 
a result of photoabsorption, the data must be weighted by the dependence of the 
photoabsorption cross section on the size (n )  of the cluster ion (Levinger et aZ1988). 

If the priors are known or postulated there is no difficulty since one can proceed as 
follows. Let the weighted probabilities of events be denoted by 

Pi = n(j)pj. (A1.8)  

Then we rewrite (A1.6)  and (A1.7) as 

Sn = - E Pi logP,/n(j) and (+)" = 2 Pj@(j ) .  (A1.9) 

We maximize the Lagrangian with respect to Pj ,  Equation (A1.8) is the solution, 
withpigivenin (A1.3). The functional formoftheexponential part, i.e. thedependence 

i 
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on @ I ,  CpZ, ,  . ., GR, is not affected by the introduction of the prior, hut the pre- 
exponential part is, andso are the numerical valuesof the Lagrangian multipliers, A '  to 
,IR. This follows since these are given by the implicit equations 

(Al .  10) 

which contain n. In the use of MEM as a pure predictive tool for natural phenomena. the 
dependence of the solution on the priors raises the question: 'Which is the best prior?' 
(Jeffreys 1961, Jaynes 1983, Englman er a1 1988a). It seems that no satisfactory answer 
exists at this stage, except perhaps to say that the MEM solution is unique as far as its 
asymptotic exponential dependence is concerned but not regarding the prefactor. 

The following, related problem appears to have been solved (Rivier ef al 1989). 
Suppose that there exist a number K of possible priors (e.g. K alternative beliefs or 
hypotheses), given by 

nqi) k = 1 , .  . . , K .  (Al.11) 

(v) = C 45'(~~n(j~eXp[-A1@'(j) - . . . - ~ ~ 4 5 ~ ( 1 3 1  
I 

What linear combination 
K 

n(j) = E p k n k ( i )  (A1.12) 

gives the best prior? 'Best' is to he considered in terms of incoming information. since 
before that information we suppose (democratically) that all priors have the same 
weight. The proposed solution relieson maximizing the following generalized functional 
of the event probabilities and of the weightspk: 

k = I  

K 

WP,LIPV = - c P ,  iOgP,/nu) - EC(C P , @ Y ~  - w j  - c p k  iogpk 
I r ' I  ksl 

(A1.13) 

where n is defined in (A1.12) and U quantifies the credit accorded to the diversity of 
views relative to factual evidence. (Rivier eta/  (1989) assumed U = 1, which is as good 
a starting point as any.) The MEM weights are 

pk = exp(Xk/v)/x exp(Xk/v) (A1.14) 
' k  

where 

(A1.15) 

is the overlap between the prior ITk and the exponential part of the MEM probability. The 
dependenceof the weightsp'on the incoming evidence is through the expectation values 
(@') and the resulting values of A'. 

It is interesting to compare this result with the Bayesian rule (Jaynes 1985, Jeffreys 
1961, Skilling 1989) 

P(kl(@)) = wV((@)lk)/fY(@)) (A1.16) 

whose meaning in the present context is the following. The probability P(k l (@) )  for the 
hypothesis (or prior) k,  given that the mean has the observed value (@), is equal to 
the probability P(k)  of the same hypothesis, irrespective~ of the observation on (@), 
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multiplied by the probability P( (@) /k )  of obtaining (@) on the basis of the k hypothesis 
and divided by the probability P((@)) of obtaining the observation (@) on the mean. The 
Bayesian interpretation of the result in (A1.14) and (A1.15) is then, in an obvious 
notation. 

(A1.17) 

(A1.18) 

~ ( k )  = E exp[~k( (@)) /v l /x  2 exp[xk((+))/v~. (A1.19) 

We now recognize the merit of MEM as providing a systematic method for dif- 
ferentiation between alternative hypotheses (beliefs, physical mechanisms) on the basis 
of incoming evidence. The shortcoming of MEM is that much of our knowledge, under- 
standing and ‘feeling’ for the behaviour of the physical system that is not phrased 
explicitly in the form of constraints receives no expression in the predictions. 

(*) k w 

Appendix 2. Fracture diversity , 

A2.1. Causes of fracture 

Mechanical fracture is frequently the physical process that precedes and causes 
fragmentation, though such is not the case in droplet formation (section 6.5), 
photofragmentation, nuclear events (section 6.6). desorption, etc. 

At the root of the fracture of solids is the breakage of atomic or molecular bonds. 
Simulations of the fracture process on this fundamental level have been numerous 
(Esterling 1979, Latanision and Pickens 1983, Paskin et ai 1983, Thomson 1986, 
Thomson and Fuller 1982). There are three considerations that render this approach 
of limited scope or excessive difficulty. (‘Clearly, for the near term, there is not likely 
to be a first-principles calculation of a crack tip’ (Thomson 1986).) 

(i) Subsequent to fracture there is a large-scale relaxation, i.e. shift of particle 
positions, in the solid surrounding the created discontinuiry (or bond breakage) (Mai 
and Lawn 1987). Thus a presumed single-particle scission is in truth a many-particle 
effect. Owing to this and other causes, nominal atomic surface energy densities (the 
energy input needed to cut atomic bonds over a unit surface) exceed observed surface 
energy densities (the quantity that enters Griffith’s expression for the fracture strength 
(Griffith 1920)) by two or three orders of magnitudes (Sih 1983). 

(ii) The region in the vicinity of the crack tip shows (even in brittle solids) plastic 
behaviour. Such behaviour is difficult to model with elastic strings (obeying Hooke’s 
law, at least up to a range, as is frequent practice in atomistic simulations) or  to 
formulate fracture in the context of ordinary thermodynamics. 

(iii) The applied stress that brings about breakage does so not by initiating and 
opening up a single void, but by giving birth to a number of microcracks (or microvoids, 
in ductile materials), which then interact and ultimately merge to propagate the 
macrocrack (Curran er al 1987). This viewpoint is becoming increasingly more firmly 
established as better observational techniques on the microevent length scale (<1 pm) 
and fast timescales (<lO-’s) are available (Bowling er a1 1987, Faber et a1 1988). In 
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crack about to be opened 
I[ m 

fast processes (which cause most of the fragmentations treated in this review) the 
proliferation of microcracks is particularly decisive. This can be understood by the 
following argument. 

Two events taking place in the solid at a separation of A1 develop independently 
of each other, provided the ratio propagation velocity/Al is smaller than the relative 
strain rate i / ~  due to an externally applied force. With propagation or sound velocities 
of the order of lo3 m s-l, strains E - lo-’ and strain rates i > lo6 sFL (appropriate to 
explosive breakage), two cracks at distances larger than 

hl = m (A2.1) 

prefer to develop independently, rather than let stress release operate by the growth 
of one crack (presumably the larger one). Likely, the true distances are smaller than 
that in (A2.1). 

A2.2. Fracture in real-life situations 

Modalities of fracture in real-life situations are so multifarious that either an all- 
embracing treatment or one that is based on a single viewpoint is likely to court failure. 
Therefore, in the following brief essay we emphasize just the different varieties of 
modes and forms that fracture can take, as seen by several leading workers in the 
field. The putative moral from this exercise is that in view of the wide spectra of 
manifestations one is inevitably thrown back to a stochastic description, like that 
provided by MEM. 

The three modes of external stress with respect to the fracture plane, shown in 
figure 15 and traditionally known as modes I, I1 and 111, are perhaps the least relevant 
subdivision of fracture-causing processes, since in most of the fragmentation situations 
discussed in this review the imposed stress appears in mixed modes. This claim is 
supported by recent observation of crack types in indented ceramics where also the 
variety of observed cracking sequences has defied systematization in terms of the 
nature of the applied load (Cook and Pharr 1990). In talking about the initiation of 
microdefects, one should perhaps temper the claim for an excessive variety in the 
following sense. Theories of microvoid nucleation, pioneered by Raj and Ashby (1975) 
in the context of polycrystalline metals, apparently lead to the same, exponential 
microflaw size distribution (as a function of the linear flaw dimension), no matter what 
are the details of the flaw-producing mechanism (Curran et a1 1987). 

An important differentiation is between ductile and brittle fracture, the former 
being characteristic of most metals, metallic alloys and also of high temperatures and 
low strain rates, whereas the latter operates in rocks, ceramics. etc. at low tem- 
peratures and in fast processes (ubiquitously). Typical flaws are, respectively, voids 
and cracks. A seminal contribution to fracture processes in a metal ring was made by 
Mott (1947). who used momentum conservation to calculate the time that stress 
unloading requires to propagate away from the point of fracture until completion of 
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failure. For elaboration of this theory we refer to Kipp and Grady (1985). For brittle 
fracture the corresponding advances are due to Griffith (1920) and Irwin (1957), who 
formulated an energy-balance-based criterion for the run-away motion of cracks. This 
will happen when the release of stress energy around a growing crack (regarded as a 
free surface) exceeds the energy expenditure involved in the crack extension. 

Using considerations similar to those given in the previous section regarding the 
rate dependence of defect activation, Grady and Kipp (1989) distinguished between 
fracture processes that are dominated by the input stress energy and those by the 
defect population density. In the former the rate of fracturing depends on the loading 
intensity; in the latter strengthening the load does not enhance fracture, since the 
number of microdefects is insufficient to respond to the added load and the energy 
gets diverted into other channels (like mass motion or heat). As a rule, high strain 
rates (d) ensure the creation of sufficiently dense defect population so that fracturing 
rate becomes energy-dominated, while low d creates defect bottlenecks. 

Experimentally observed crack-tip shapes fall into three broad categories that link 
the fracture process both to the brittleductile material characterization and to the 
emission of dislocations from and around the growing crack (Thomson 1986). Sharp 
knife-edged cracks cleave, have brittle characteristics and displace, but do not gener- 
ate, dislocations as they advance; wedge-shaped cracks emit new distinctly oriented 
dislocations that advance to a free surface as the crack grows; finally, blunt or rounded 
crack lips emit a mixture of dislocations, typical of plastic behaviour. The implication 
of dislocations in crack motion is well recognized (it is akin to the molecular basis of 
gas thermodynamics), and the dislocation-based approach has had its successes in 
relating metal hardness to granularity (Hirth 1972). However, difficulties of treatment 
have so far prevented a broadly significant contribution to crack growth and fracture. 
Perhaps recent advances in lattice gauge theories might point to new directions, though 
at this stage this clearly seems a remote subject on which to pin our expectations 
(Kleinert 1989). 
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